Science and the Return to the Moon: The Vision for Space Exploration

Paul D. Spudis

Lunar and Planetary Institute

spudis@lpi.usra.edu

www.spudislunarresources.com

NLSI Lunar Science Conference
NASA Ames Research Center
Mountain View, CA
21 July, 2008

What's the value of exploration?

Humans explore because it conveys an evolutionary advantage

exploration broadens experience and imagination, permitting better prediction of the future, ensuring better odds for survival

curiosity and its satisfaction is intellectually and emotionally satisfying

Exploration improves our ability to solve problems

increased imagination and knowledge base permits recognition of innovative approaches and solutions

helps focus energies on posing the right questions, or, on questions that *can* be addressed and answered

Exploration excites and inspires the creative, productive segments of society

permits intellectual connections and relations that might not otherwise occur (the 'ah-ha!' syndrome)

Frontiers are unknown, mysterious places that stimulate imagination

H.M.S. CHALLENGER PREPARING TO SOUND, 1875

Exploration ≠ Science

Exploration is going into the unknown, probing the frontier, looking over the next hill.

It has structure, but is not directed
Discoveries sometimes build on each
other, sometimes are isolated

Science is the process by which we explain nature

It has a well-defined, directed structure (observation, hypothesis, experiment, verification)

Scientific knowledge is cumulative and self-correcting

Both are dynamic, not static. Science always follows exploration

Exploration precedes and enables science

Exploration and Science

"Exploration without science is tourism" - A NASA official

Exploration is *broader and* richer than science

Security and asset protection

Wealth creation

Settlement and infrastructure development

Exploration enables science

Access to remote locales and exotic environments

Exploratory infrastructure permits scientific investigation

Why Human Spaceflight?

The rational dimension

People bring unique capabilities to space exploration

Conduct field science, requiring intense interaction of human with environment

Repair and maintain complex equipment and installations

Machines do not and will not possess intelligence of necessary magnitude to explore the solar system

Robots are good for remote, hostile environments to provide first-order reconnaissance

Robots can be designed to answer focused questions (hypothesis testing) or make precision measurements

But: We don't always know ahead of time what measurements are significant and which are irrelevant

Why Human Spaceflight?

The emotional dimension

Inspiration

People in space are our surrogates; vicarious exploration

Cathedral building; scale is too big for one generation

A human window onto the universe

Drama

Marked upsurge of public interest during crises (e.g., Apollo 13)

Emotion and curiosity (about past and future)

A modern gladiatorial contest, without the gore

Spectacle

Invokes our pioneer/frontier origins

Encourages a communal perspective

Belief in the future; something bigger than ourselves

Human Spaceflight

The Ultimate Rationale

Study of Apollo samples taught us key signs of large-body impact

We have since found that large objects collide with Earth on a quasi-regular basis

Not a question of *if*, but *when*

Conclusion: We're doomed

Solution: Multiple reservoirs

of human culture

Why the Moon?

It's close

Three days away and easily accessible (as near as GEO)

Transport system to Moon can also access GEO, cislunar, Earth-Sun Lagrangians, and some asteroids

It's interesting

Moon contains a record of planetary history, evolution and processes unavailable for study on Earth or elsewhere

It's useful

Retire risk to future planetary missions by re-acquiring experience and testing with lunar missions

Development of lunar resources has potential to be a major advancement in space logistics capability

The Vision for Space Exploration

Conceived in response to loss of Columbia Space Shuttle, Feb. 1 2003

Five steps:

Return Shuttle to flight

Complete ISS assembly and retire Shuttle

Build new human spacecraft (CEV) for transport beyond LEO

Return to the Moon with people and robots to explore and prepare for voyages beyond

Human missions to Mars and other destinations

Proposed by President Bush, endorsed by 109th Congress VSE is now national policy

Today I announce a new plan to explore space and extend a human presence across our solar system. We will begin the effort quickly, using existing programs and personnel. We'll make steady progress – one mission, one voyage, one landing at a time.

President George W. Bush - January 14, 2004

S 1981

One Hundred Minth Congress
of the
United States of America

AT THE FIRST SESSION

Begun and held at the City of Washington on Tuesday, the fourth day of January, two thousand and five

An Act

o authorize the programs of the National Aeronautics and Space Administratio

Founding VSE Policy Documents

Vision for Space Exploration speech

Intent is to create both an extended human presence in space and a sustained program.

The Moon plays a key role:

Our first destination beyond LEO

Serves as a test bed for development of systems, procedures and techniques and a staging area for missions beyond

Use of lunar resources is specifically mentioned

Three rationales for U.S. space exploration: science, security, and economy

Goal is a sustained and affordable program

Use the Moon to create new capability; learn how to live and work off-planet

Lead with robotic missions that gather key information *and* emplace assets before the arrival of people

Key activities of human missions to the Moon are science and development of new approaches, both with the aim of creating a sustained program

Learning to use lunar resources is specifically identified as one of these new approaches

An Overlooked Key Policy Document

Speech by OSTP Director and President's Science Advisor John Marburger at Goddard Symposium, March 15, 2006

Critical Points:

Incorporate Solar System into our economic sphere

Ultimate goal is *to use* space for benefit of mankind

Moon is of unique significance -- closest and most accessible source of materials and energy out of Earth's gravity well

Development of off-planet resources makes entire Solar System accessible

Critical architectural consideration:

Space exploration budget must grow at low level to be sustainable

44th Robert H. Goddard Memorial Symposium Greenbelt, Maryland March 15 Keynote Address

John Marburger Director, Office of Science and Technology Policy Executive Office of the President

It is a privilege for me to speak in this Symposium. My first job as a scientist, before I went on to graduate school, was at Goddard Space Flight Center. I had worked there during the summer of 1961, and returned as a full time employee in what was then called the Thermal Systems branch in the summer of 1962. Goddard was booming in those days, and the challenge of making scientific instruments work in the space

The Vision: A Fundamental Premise

Apollo was a politically driven program; we are NOT in a similar situation

Congress has funded NASA at (more or less) a constant level for the last 30 years (~ 1% of federal budget)

Such spending levels appear to be politically "sustainable"

We must be clever enough to architect a lunar return that fits this budget profile. How?

Small, incremental, cumulative steps
Learn to use what we find in space to
create capability

Extend human reach in stages

Free variables: Apollo = funding; VSE = schedule

Deriving the VSE lunar "mission"

Common themes from the VSE policy documents:

Sustainable and affordable program

Explore with robots and humans

Test bed for systems and procedures on the Moon Lunar resource utilization Creation of new space flight capability

We are going to the Moon to learn the skills we need to live and work productively off-planet

What are these skills?

Arrive

Create transportation system to take humans to and from the Moon

Use this system to access cislunar and translunar space

Survive

Build habitat to safely house human explorers

Protect from environmental hazards

Extract consumables from local materials

Thrive

Create new infrastructure and capabilities by using the material and energy resources of the Moon

Extend this economic zone first to cislunar, then to translunar space

Architectural Implications

Use robotic flights to acquire strategic knowledge and emplace assets

robotic missions are *not* just for science

Commonality of hardware, systems, procedures between robotic and human flight elements

test Altair components on robotic missions

Locate "high grade" lunar resources and build human habitats nearby

concentrated resources (e.g., polar ice) are easiest to use; focus on them first

Build up infrastructure in a single location to create capability rapidly

Forget sorties: pick the site and build up an outpost

Science and the Vision I

Science is a key part of the Vision

Pure science v. Applied science

Scientific exploration will always be a part of the NASA portfolio

Applied sciences at core of making space "useful"

The Vision makes applied science an important, co-equal part of the space program

Science and the Vision II

If we are successful in using space resources, new scientific opportunities will arise

Conversely, future scientific opportunities will be limited if we must always bring what we need in space from Earth

The Vision for Space Exploration

What is the VSE?

A strategic direction

Small, incremental, cumulative steps

Create new space-faring capability

Can humans thrive off-planet?

What isn't the VSE?

A science entitlement

A rocket-building entitlement

Apollo to Mars

The next "NASA program"

For more information, go to:

http://www.spudislunarresources.com

Spudis Lunar Resources

Using the Moon to learn how to live and work productively in space

What's this web site all about?

Paul D. Spudis, Ph.D.

<u>spudis@lpi.usra.edu</u>

Home Resume Bibliography Opinion/Editorial Papers Moon 101 Images/Maps Links Blog

Or e-mail me at:

spudis@lpi.usra.edu